skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mankin, Justin_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The impact of plants on runoff under high atmospheric CO2is a major uncertainty for future water resources. Theory and Earth system models (ESMs) suggest that stricter plant stomatal regulation under high CO2will reduce transpiration, potentially boosting runoff. Yet, across a 12-member ensemble of idealized ESM simulations that isolate plant responses to CO2, we show that lower transpiration robustly enhances runoff over only 5% of modelled global land area. Precipitation changes are five times more important than transpiration changes in driving runoff responses and are a significant signal of CO2physiological forcing over 31–57% of land areas across models. Crucially, ESMs largely disagree on where physiologically forced precipitation changes occur but agree that plant responses in most locations are as likely to reduce runoff as increase it. These results imply that large model uncertainties in precipitation responses, rather than transpiration responses, explain why ESMs disagree on plant physiologically driven runoff changes. 
    more » « less
  2. Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer. 
    more » « less